

QUESTION PAPER WITH SOLUTION

MATHEMATICS _ 2 Sep. _ SHIFT - 1

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

A line parallel to the straight line 2x-y=0 is tangent to the hyperbola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ at the point **Q.1**

 (x_1,y_1) . Then $x_1^2 + 5y_1^2$ is equal to :

(3)8

(4)5

Sol.

T: $\frac{XX_1}{4} - \frac{YY_1}{2} = 1$ (1)

t: 2x - y = 0 is parallel to T

 \Rightarrow T : 2x - y = λ (2)

Now compare (1) & (2)

 $\frac{X_1}{4} = \frac{Y_1}{2} = \frac{1}{\lambda}$

 $x_1 = 8/\lambda \& y_1 = 2/\lambda$

 (x_1, y_1) lies on hyperbola $\Rightarrow \frac{64}{4\lambda^2} - \frac{4}{2\lambda^2} = 1$

Now = $x_1^2 + 5y_1^2$

 $=\frac{64}{\lambda_2}+5\frac{4}{\lambda_2}$

= 6 Ans.

The domain of the function $f(x) = \sin^{-1}\left(\frac{|x|+5}{x^2+1}\right)$ is $(-\infty, -a] \cup [a, \infty)$. Then a is equal to : **Q.2**

(1)
$$\frac{\sqrt{17}-1}{2}$$

(1) $\frac{\sqrt{17}-1}{2}$ (2) $\frac{\sqrt{17}}{2}$ (3) $\frac{1+\sqrt{17}}{2}$ (4) $\frac{\sqrt{17}}{2}+1$

Sol.

 $-1 \leq \frac{\mid x \mid +5}{x^2 + 1} \leq 1$

 $-x^{2}-1 \le |x|+5 \le x^{2}+1$ case - I

 $-x^2-1 \le |x|+5$

this inequality is always right $\forall x \in R$

 $|x|+5 \le x^2+1$

 $x^2 - |x| > 4$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

$$|x|^2 - |x| - 4 \ge 0$$

$$\left(\mid x\mid -\left(\frac{1+\sqrt{17}}{2}\right)\right)\left(\mid x\mid -\left(\frac{1-\sqrt{17}}{2}\right)\right)\geq 0$$

$$|x|\leq \frac{1-\sqrt{17}}{2}\cup |x|\geq \frac{1+\sqrt{17}}{2}$$

$$X \in \left(-\infty, \frac{-1 - \sqrt{17}}{2}\right] \cup \left\lceil \frac{1 + \sqrt{17}}{2}, \infty \right)$$

$$a = \frac{1 + \sqrt{17}}{2}$$

 $ae^{x} + be^{-x}, -1 \le x < 1$ If a function f(x) defined by $f(x) = \left\{ cx^2 \right\}$, $1 \le x \le 3$ be continuous for some a, $b,c \in R$ and Q.3 $ax^{2} + 2cx$, $3 < x \le 4$

f'(0)+f'(2) = e, then the value of a is:

(1)
$$\frac{1}{e^2 - 3e + 13}$$
 (2) $\frac{e}{e^2 - 3e - 13}$ (3) $\frac{e}{e^2 + 3e + 13}$ (4) $\frac{e}{e^2 - 3e + 13}$

(2)
$$\frac{e}{e^2 - 3e - 13}$$

(3)
$$\frac{e}{e^2 + 3e + 13}$$

(4)
$$\frac{e}{e^2 - 3e + 13}$$

Sol.

f(x) is continuous

at
$$x=1 \Rightarrow \boxed{ae + \frac{b}{e} = c}$$

at $x=3 \Rightarrow 9c = 9a + 6c \Rightarrow c=3a$

Now f'(0) + f'(2) = e

$$\Rightarrow$$
 a - b + 4c = e

$$\Rightarrow$$
 a - e (3a-ae) + 4.3a = e

$$\Rightarrow$$
 a - 3ae + ae² + 12a = e

$$\Rightarrow$$
 13a - 3ae + ae²=e

$$\Rightarrow \boxed{a = \frac{e}{13 - 3e + e^2}}$$

Q.4 The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in:

(1)
$$(-\infty, -9] \cup [3, \infty)$$
 (2) $[-3, \infty)$

$$(3)(-\infty,9]$$

$$(3)(-\infty,9] \qquad \qquad (4)(-\infty,-3] \cup [9,\infty)$$

Sol.

$$\frac{a}{r}$$
.a.ar = 27 \Rightarrow a = 3

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$\frac{a}{r}$$
 +a+ar=S

$$\frac{1}{r} + 1 + r = \frac{S}{3}$$

$$r + \frac{1}{r} = \frac{S}{3} - 1$$

$$r + \frac{1}{r} \ge 2 \text{ or } r + \frac{1}{r} \le -2$$

$$\frac{S}{3} \ge 3$$
 or $\frac{S}{3} \le -1$

$$S\!\in\left(-\infty,-3\right]\cup\left[9,\infty\right)$$

If $R = \{(x,y): x, y \in Z, x^2 + 3y^2 \le 8\}$ is a relation on the set of integers Z, then the domain of R^{-1} is : **Q.5**

$$(1) \{-1,0,1\}$$

$$(1) \{-1,0,1\} \qquad (2) \{-2,-1,1,2\} \qquad (3) \{0,1\}$$

$$(4)$$
 $\{-2,-1,0,1,2\}$

$$3y^2 \le 8 - x^2$$

$$R : \overline{(0,1)}, (0,-1), (1,0), (-1,0), (1,1), (1,-1)$$

R:
$$\{(0,1), (0,-1), (1,0), (-1,0), (1,1), (1,-1), (-1,1), (-1,-1), (2,0), (-2,0), (-2,0), (2,1), (2,-1), (-2,1), (-2,-1)\}$$

 \Rightarrow R: $\{-2,-1,0,1,2\} \rightarrow \{-1,0,-1\}$
Hence R⁻¹: $\{-1,0,1\} \rightarrow \{-2,-1,0,1,2\}$

$$\Rightarrow R: \{-2,-1,0,1,2\} \rightarrow \{-1,0,-1\}$$

Hence
$$R^{-1}$$
: $\{-1,0,1\} \rightarrow \{-2,-1,0,1,2\}$

Q.6 The value of
$$\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$$
 is :

$$(1) -\frac{1}{2} \left(1 - i\sqrt{3}\right) \qquad (2) \frac{1}{2} \left(1 - i\sqrt{3}\right) \qquad (3) -\frac{1}{2} \left(\sqrt{3} - i\right) \qquad (4) \frac{1}{2} \left(\sqrt{3} - i\right)$$

(2)
$$\frac{1}{2}(1-i\sqrt{3})$$

(3)
$$-\frac{1}{2}(\sqrt{3}-i)$$

(4)
$$\frac{1}{2}(\sqrt{3}-i)$$

$$\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^{3}$$

$$= \left(\frac{1+\cos\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) + i\sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)}{1+\cos\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) - i\sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)}\right)^{3}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

$$= \left(\frac{1 + \cos\frac{5\pi}{18} + i\sin\frac{5\pi}{18}}{1 + \cos\frac{5\pi}{18} - i\sin\frac{5\pi}{18}}\right)^{3}$$

$$= \left(\frac{2\cos\frac{5\pi}{36}\left\{\cos\frac{5\pi}{36} + i\sin\frac{5\pi}{36}\right\}}{2\cos\frac{5\pi}{36}\left\{\cos\frac{5\pi}{36} - i\sin\frac{5\pi}{36}\right\}}\right)^{3}$$

$$= \left(\frac{\operatorname{cis}\left(\frac{5\pi}{36}\right)}{\operatorname{cis}\left(\frac{-5\pi}{36}\right)}\right)$$

$$= cis \left(\frac{5\pi}{36} \times 3 + \frac{5\pi}{36} \times 3 \right)$$

$$= cis\left(\frac{10\pi}{12}\right)$$

$$= cis\left(\frac{5\pi}{6}\right) = \boxed{-\frac{\sqrt{3}}{2} + \frac{i}{2}}$$

- **Q.7** Let P(h,k) be a point on the curve $y=x^2+7x+2$, nearest to the line, y=3x-3. Then the equation of the normal to the curve at P is:
- (1) x+3y-62=0
- (2) x-3y-11=0
- (3) x-3y+22=0
- (4) x+3y+26=0

C: $y = x^2 + 7x + 2$ Let P: (h, k) lies on

Curve = $k = h^2 + 7h + 2$ Now for shortest distance

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$M_T |_{D}^{C} = m_L = 2h + 7 = 3$$

h = -2

k=-8

P:(-2,-8)

equation of normal to the curve is perpendicular to L: 3x - y = 3

 $N: x + 3y = \lambda$

 \downarrow Pass (-2,-8)

 $\lambda = -26$

N: x + 3y + 26 = 0

- **Q.8** Let A be a 2×2 real matrix with entries from $\{0,1\}$ and $|A| \neq 0$. Consider the following two statements:
 - (P) If $A \neq I_2$, then |A| = -1
 - (Q) If |A| = 1, then tr(A) = 2,

where I_2 denotes 2×2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then:

- (1) Both (P) and (Q) are false
- (2) (P) is true and (Q) is false
- (3) Both (P) and (Q) are true
- (4) (P) is false and (Q) is true

Sol.

$$P: A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \neq I_2 \& |A| \neq 0 \& |A| = 1 (false)$$

Q: A =
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 = 1 then Tr(A) = 2 (true)

Q.9 Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is:

$$(1) \frac{4}{17}$$

(2)
$$\frac{8}{17}$$

(3)
$$\frac{2}{5}$$

$$(4) \frac{2}{3}$$

Sol. 2

1to 30

hox I

Prime on I

{2,3,5,7,11,13,17,19,23,29}

31 to 50

box II

Prime on II

{31,37,41,43,47}

A: selected number on card is non - prime

P(A) = P(I).P(A/I) + P(II).P(A/II)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$=\frac{1}{2}\times\frac{20}{30}+\frac{1}{2}\cdot\frac{15}{20}$$

Now,
$$P(I/A) = \frac{P(II).P(A/I)}{P(A)}$$

$$=\frac{\frac{1}{2} \cdot \frac{20}{30}}{\frac{1}{2} \cdot \frac{20}{30} + \frac{1}{2} \cdot \frac{15}{20}} = \frac{\frac{2}{3}}{\frac{2}{3} + \frac{3}{4}} = \frac{8}{17}$$

Q.10 If p(x) be a polynomial of degree three that has a local maximum value 8 at x=1 and a local minimum value 4 at x=2; then p(0) is equal to :

(2) -12

$$(3) -24$$

(4)6

Sol.

$$p'(1) = 0 & p'(2) = 0$$

$$p'(x) = a(x-1)(x-2)$$

$$p(x) = a\left(\frac{x^3}{3} - \frac{3x^2}{2} + 2x\right) + b$$

$$p(1)=8 \Rightarrow a\left(\frac{1}{3}-\frac{3}{2}+2\right)+b=8$$

$$p(2) = 4 \Rightarrow a\left(\frac{8}{3} - \frac{3.4}{2} + 2.2\right) + b = 4$$
(ii)

from equation (i) and (ii)

$$a = 24 \& b = -12$$

$$p(0) = b = -12$$

Q.11 The contrapositive of the statement "If I reach the station in time, then I will catch the train"

(1) If I will catch the train, then I reach the station in time.

(2) If I do not reach the station in time, then I will catch the train.

(3) If I do not reach the station in time, then I will not catch the train.

(4) If I will not catch the train, then I do not reach the station in time.

Sol.

Statement p and q are true

Statement, then the contra positive of the implication

 $p\rightarrow q = (\sim q) \rightarrow (\sim p)$

hence correct Ans. is 4

Q.12 Let α and β be the roots of the equation, $5x^2+6x-2=0$. If $S_n = \alpha^n + \beta^n$, n=1,2,3,...., then:

$$(1) 5S_6 + 6S_5 + 2S_4 = 0$$

$$(2) 6S_{-} + 5S_{-} = 2S_{-}$$

$$(3) 6S_6 + 5S_5 + 2S_4 = 0$$

(2)
$$6S_6 + 5S_5 = 2S_4$$

(4) $5S_6 + 6S_5 = 2S_4$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol.

$$5x^2 + 6x - 2 = 0 < \alpha = 5\alpha^2 + 6\alpha = 2$$

$$6\alpha - 2 = -5\alpha^2$$

Simillarly

$$6\beta - 2 = -5\beta^2$$

$$S_6 = \alpha^6 + \beta^6$$

$$S_{r}^{0} = \alpha^{5} + \beta^{5}$$

$$S_4^3 = \alpha^4 + \beta^4$$

6
$$\beta$$
 - 2 = -5 β ²
S₆ = α ⁶ + β ⁶
S₅ = α ⁵ + β ⁵
S₄ = α ⁴ + β ⁴
Now 6S₅ - 2S₄
= 6 α ⁵ - 2 α ⁴ + 6 β ⁵ - 2 β ⁴

$$= a^4(6\alpha-2) + \beta^4(6\beta-2)$$

=
$$a^4(6\alpha-2) + \beta^4(6\beta-2)$$

= $\alpha^4(-5\alpha^2) + \beta^4(-5\beta^2)$
= $-5(\alpha^6 + \beta^6)$

$$= -5(\alpha^6 + \beta^6)$$

$$= -5S_6$$

$$= -5S_6$$

= $6S_5 + 5S_6 = 2S_4$

Q.13 If the tangent to the curve y=x+siny at a point (a,b) is parallel to the line joining $\left(0,\frac{3}{2}\right)$ and

$$\left(\frac{1}{2},2\right)$$
, then:

(1)
$$b = \frac{\pi}{2} + a$$
 (2) $|a+b|=1$

$$(2) |a+b|=1$$

(3)
$$|b-a|=1$$

Sol.

$$\frac{dy}{dx}\Big|_{p(a,b)}^{c} = \frac{2 - \frac{3}{2}}{\frac{1}{2} - 0}$$

$$1 + \cos b = 1 p : (a,b) \text{ lies on curve}$$

$$cosb = 0$$

$$cosb = 0$$
 $b = a + sin b$

$$b = a \pm 1$$

$$b-a=\pm 1$$

Q.14 Area (in sq. units) of the region outside $\frac{|x|}{2} + \frac{|y|}{3} = 1$ and inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is:

(1)
$$3(\pi-2)$$

(2)
$$6(\pi-2)$$

(3)
$$6(4-\pi)$$

(2)
$$6(\pi-2)$$
 (3) $6(4-\pi)$ (4) $3(4-\pi)$

Sol.

$$c_1: \frac{|x|}{2} + \frac{|y|}{3} = 1$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

A =
$$4\left(\frac{\pi ab}{4} - \frac{1}{2} \cdot 2 \cdot 3\right)$$

A = π · 2 · 3 - 12
A = $6(\pi - 2)$

Q.15 If |x|<1, |y|<1 and $x\neq y$, then the sum to infinity of the following series $(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+...$ is:

$$(1) \ \frac{x+y+xy}{\big(1-x\big)\big(1-y\big)} \qquad (2) \ \frac{x+y-xy}{\big(1-x\big)\big(1-y\big)} \qquad (3) \ \frac{x+y+xy}{\big(1+x\big)\big(1+y\big)} \qquad (4) \ \frac{x+y-xy}{\big(1+x\big)\big(1+y\big)}$$

$$(2) \frac{x+y-xy}{(1-x)(1-y)}$$

(3)
$$\frac{x + y + xy}{(1 + x)(1 + y)}$$

$$(4) \frac{x+y-xy}{(1+x)(1+y)}$$

Sol.

$$(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+.... \infty$$

$$= \frac{1}{(x-y)} \left\{ \left(x^2 - y^2\right) + \left(x^3 - y^3\right) + \left(x^4 - y^4\right) + \dots \infty \right\}$$

$$= \frac{x^2}{1-x} - \frac{y^2}{1-y}$$

$$=\frac{x^2(1-y)-y^2(1-x)}{(1-x)(1-y)(x-y)}$$

$$=\frac{(x^2-y^2)-xy(x-y)}{(1-x)(1-y)(x-y)}=\frac{((x+y)-xy)(x-y)}{(1-x)(1-y)(x-y)}$$

$$=\frac{x+y-xy}{(1-x)(1-y)}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Q.16 Let $\alpha > 0, \beta > 0$ be such that $\alpha^3 + \beta^2 = 4$. If the maximum value of the term independent of x in

the binomial expansion of $\left(\alpha x^{\frac{1}{9}} + \beta x^{-\frac{1}{6}}\right)^{10}$ is 10k, then k is equal to:

Sol.

For term independent of x

$$T_{r+1} = {}^{10}C_r \left(\alpha x^{\frac{1}{9}}\right)^{10-r} \cdot \left(\beta x^{-\frac{1}{6}}\right)^r$$

$$T_{r+1} = {}^{10}C_r\alpha^{10-r}\beta^r.x^{\frac{10-r}{9}}.x^{-\frac{r}{6}}$$

$$\therefore \frac{10-r}{9} - \frac{r}{6} = 0 \Rightarrow r = 4$$

$$T_5 = {}^{10}C_r \alpha^6 . \beta^4$$

 $\therefore AM \ge GM$

$$\therefore$$
 AM \geq GM

Now
$$\frac{\left(\frac{\alpha^3}{2} + \frac{\alpha^3}{2} + \frac{\beta^2}{2} + \frac{\beta^2}{2}\right)}{4} \ge \sqrt[4]{\frac{\alpha^6 \cdot \beta^4}{2^4}}$$

$$\left(\frac{4}{4}\right)^4 \ge \frac{\alpha^6 \beta^4}{2^4}$$

$$\alpha^6.\beta^4 < 2^4$$

$$\alpha^{6} \cdot \beta^{4} \leq 2^{4}$$
 $^{10}C_{4} \cdot \alpha^{6} \cdot \beta^{4} \leq {}^{10}C_{4} \cdot 2^{4}$

$$T_5 \leq^{10} C_4 2^4$$

$$T_5 \le \frac{10!}{6!4!}.2^4$$

$$T_{_{5}}\leq\frac{10.9.8.7.2^{4}}{4.3.2.1}$$

maximum value of $T_5 = 10.3.7.16 = 10k$ k = 16.7.3

$$k = 16.7.3$$

$$k = 336$$

Motion[™]

Q.17 Let S be the set of all $\lambda \in R$ for which the system of linear equations

$$2x-y+2z=2$$

$$x-2y+\lambda z=-4$$

$$x + \lambda y + z = 4$$

has no solution. Then the set S

- (1) is an empty set.
- (3) contains more than two elements.
- Sol. 2

For no solution

$$\Delta = 0 \& \Delta_1 | \Delta_2 | \Delta_3 \neq 0$$

$$\Delta = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & \lambda \\ 1 & \lambda & 1 \end{vmatrix} = 0$$

$$2(-2-\lambda^2) + 1(1-\lambda) + 2(\lambda+2) = 0$$

$$-4 - 2\lambda^2 + 1 - \lambda + 2\lambda + 4 = 0$$

$$-2\lambda^2 + \lambda + 1 = 0$$

$$2\lambda^2 - \lambda - 1 = 0 \Rightarrow \lambda = 1, -1/2$$

Equation has exactly 2 solution

Q.18 Let
$$X = \{x \in \mathbb{N} : 1 \le x \le 17\}$$
 and $Y = \{ax + b : x \in X \text{ and } a, b \in \mathbb{R}, a > 0\}$. If mean and variance of elements of Y are 17 and 216 respectively then a+b is equal to: (1)-27 (2) 7 (3)-7 (4) 9

(2) is a singleton.

(4) contains exactly two elements.

Sol. 3

$$Y : \{ax+b : x \in X \& a, b \in R, a>0\}$$

Given Var(Y) = 216

$$\frac{\sum y_1^2}{n}$$
 - (mean)² = 216

$$\frac{\sum y_1^2}{17} - 289 = 216$$

$$\sum y_1 = 8585$$

$$(a+b)^2 + (2a+b)^2 + \dots + (17a+b)^2 = 8585$$

$$105a^2 + b^2 + 18ab = 505 \dots (1)$$

Now
$$\sum y_1 = 17 \times 17$$

$$a(17 \times 9) + 17.b = 17 \times 17$$

$$9a + b = 17 \dots (2)$$

$$a = 3 \& b = -10$$

$$a+b = -7$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Q.19 Let y=y(x) be the solution of the differential equation, $\frac{2+\sin x}{y+1} \cdot \frac{dy}{dx} = -\cos x, y > 0, y(0) = 1$. If

 $y(\pi)=a$, and $\frac{dy}{dx}$ at $x=\pi\,is\,b$, then the ordered pair (a,b) is equal to:

- $(1)\left(2,\frac{3}{2}\right)$
- (2) (1,1)
- (3)(2,1)
- (4)(1,-1)

Sol.

$$\int \frac{dy}{y+1} = \int \frac{-\cos x \ dx}{2 + \sin x}$$

 $\ln |y+1| = -\ln |2+\sin x| + k$

k = ln 4

Now C: $(y+1)(2+\sin x) = 4$

 $y(\pi)=a\Rightarrow (a+1)(2+0)=4\Rightarrow (a=1)$

$$\frac{dy}{dx}\Big|_{x=\pi} = b \Rightarrow b = -(-1)\left(\frac{2+0}{1+1}\right)$$

$$(a,b) = (1,1)$$

- **Q.20** The plane passing through the points (1,2,1), (2,1,2) and parallel to the line, 2x=3y, z=1 also passes through the point:
 - (1)(0,-6,2)
- (2) (0,6,-2)
- (3)(-2,0,1) (4)(2,0,-1)

Sol.

$$L: \begin{cases} 2x = 3y \\ z = 1 \end{cases} <_{Q:(3,2,1)}^{P:(0,0,1)}$$

 \vec{V}_{\perp} Dr of line (3,2,0)

$$\vec{n}_p = \overrightarrow{AB} \times \vec{V}_L$$

$$\vec{n}_p = \langle 1, -1, 1 \rangle \times \langle 3, 2, 0 \rangle$$

$$\vec{n}_p = \langle -2, +3, 5 \rangle$$

Plane: -2(x-1)+3(y-2)+5(z-1)=0

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Plane: -2x+3y+5z+2-6-5=0Plane : 2x - 3y - 5z = -9

- **Q.21** The number of integral values of k for which the line, 3x+4y=k intersects the circle, x^2+y^2-2x-k 4y+4=0 at two distinct points is.....
- Sol.

$$c: (1,2) \& r = 1$$

 $|cp| < r$

$$\left|\frac{3.1+4.2-k}{5}\right|<1$$

6<k<16

$$k = 7, 8, 9, \dots, 15 \Rightarrow \text{ total 9 value of } k$$

- **Q.22** Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $\left|\vec{a}-\vec{b}\right|^2+\left|\vec{a}-\vec{c}\right|^2=8$. Then $\left|\vec{a}+2\vec{b}\right|^2+\left|\vec{a}+2\vec{c}\right|^2$ is equal
- Sol.

$$\left|\vec{a} - \vec{b}\right|^2 + \left|\vec{a} - \vec{c}\right|^2 = 8$$

$$(\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) + (\vec{a} - \vec{c})(\vec{a} - \vec{c}) = 8$$

$$a^2+b^2-2a.b+a^2+c^2-2a.c=8$$

$$2a^2+b^2+c^2-2a.b-2a.c=8$$

$$a.b + a.c = -2$$

Now
$$|\vec{a} + 2\vec{b}|^2 + |\vec{a} + 2\vec{c}|^2$$

$$= 2a^2 + 4b^2 + 4c^1 + 4\overline{a}$$
. $\overline{b} + 4\overline{a}$. \overline{c}

$$= 2 + 4 + 4 + 4 (-2)$$

- Q.23 If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is......
- Sol.

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Q.24. If $\lim_{x\to 1} \frac{x + x^2 + x^3 + ... + x^n - n}{x-1} = 820$, $(n \in N)$ then the value of n is equal to :

Sol. 40

$$\lim_{x \to 1} \frac{(x-1)}{x-1} + \frac{(x^2-1)}{x-1} + \dots + \frac{(x^n-1)}{x-1} = 820$$

$$\Rightarrow 1 + 2 + 3 + \dots + n = 820$$

$$\Rightarrow \sum n = 820$$

$$\Rightarrow \frac{n(n+1)}{2} = 820$$

$$\Rightarrow n = 40$$

Q.25 The integral $\int_{0}^{2} ||x-1|-x| dx$ is equal to :

Sol. 1.5

$$\int_{0}^{2} ||x-1|-x| dx$$

$$= \int_{0}^{1} |1-x-x| dx + \int_{1}^{2} |x-1-x| dx$$

$$= \int_{0}^{1} |2x-1| dx + \int_{1}^{2} 1 dx$$

$$= \int_{0}^{\frac{1}{2}} (1-2x) dx + \int_{\frac{1}{2}}^{1} (2x-1) dx + \int_{1}^{2} 1 dx$$

$$= \left[\left(\frac{1}{2} - 0 \right) - \left(\frac{1}{4} - 0 \right) \right] + \left(1 - \frac{1}{4} \right) - \left(1 - \frac{1}{2} \right) + 1$$

$$= \frac{1}{2} - \frac{1}{4} + \frac{3}{4} - \frac{1}{2} + 1$$

$$= \frac{3}{2}$$

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होंने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

335 13th (2019)

318

308

300

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE				
CLASS	SILVER	GOLD	PLATINUM	
7th/8th	FREE	₹ 12,000	₹ 35,000	
9th/10th	FREE	₹ 15,000	₹ 40,000	
11th	FREE	₹ 29,999	₹ 49,999	
12th	FREE	₹ 39,999	₹ 54,999	
12th Pass	FREE	₹ 39,999	₹ 59,999	

- + Student Kit will be provided at extra cost to Platinum Student. SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures
- GOLD (Online) can be converted to regular classroom (Any $MOTION\,Center)\,by\,paying\,difference\,amount\,after\,lockdown.$
- *** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

